GBR 2017

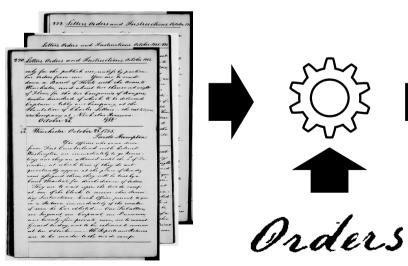
Speeding-Up Graph-based Keyword Spotting in Historical Handwritten Documents

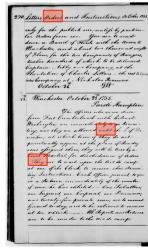
Michael Stauffer, Andreas Fischer, and Kaspar Riesen

Plantation of Charles Sellars - the rest to Ceptain Cockes bompany at Nicholas Reasmers. October 26. Gill Winchester: October 28. 1755. Parole Mampton. The officers who came down from Fort bumberland with bolonel Washington are immediately to go Recrui -

Content

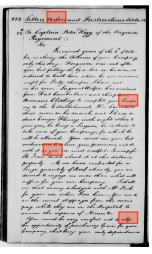
- What is Keyword Spotting
- Graph-based Keyword Spotting
 - Image Preprocessing
 - Graph Representation
 - Fast Rejection Method
- Experiments
- Conclusion + Future Work
- Q+A

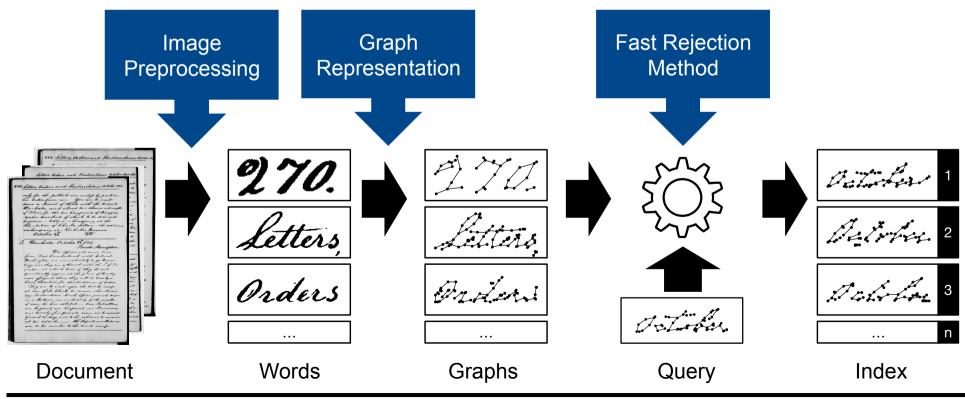

What is Keyword Spotting

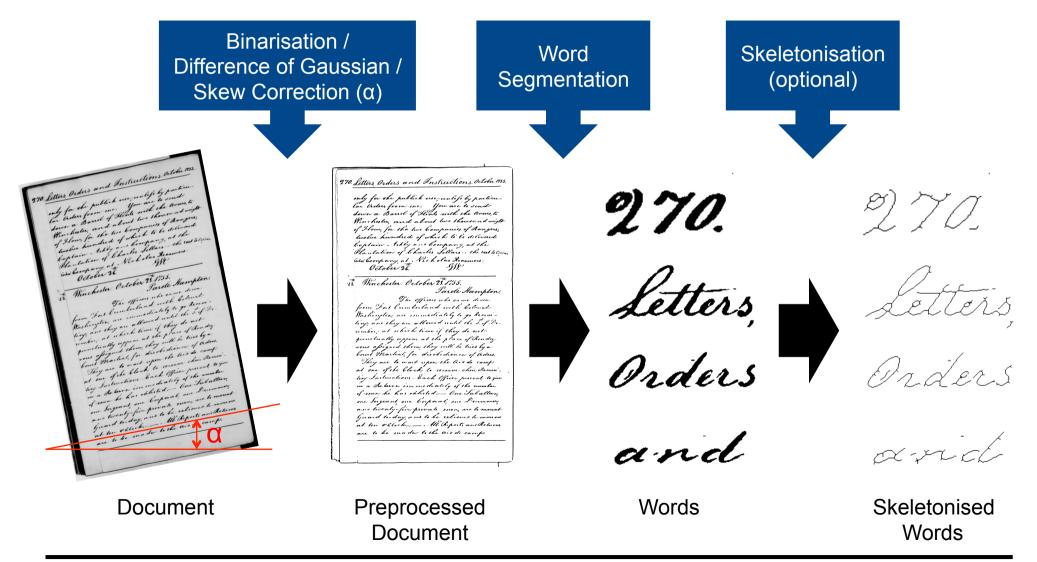

Keyword Spotting (KWS) is the task of **retrieving any instance** of a given **query** word in **speech recordings** or **text images**.

Focus on handwritten, historical documents

Document


Query


Word Spotting

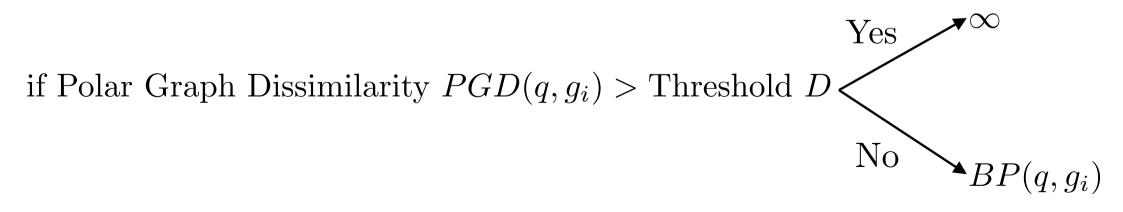

Graph-based Keyword Spotting – Overview

Graph-based KWS is based on the **representation of words** by means of different **graphs**. This representations are eventually used to **retrieve a keyword** by **matching a query** graph **with** all **document graphs**.

Michael Stauffer, Andreas Fischer and Kaspar Riesen

Graph-based Keyword Spotting – Image Preprocessing

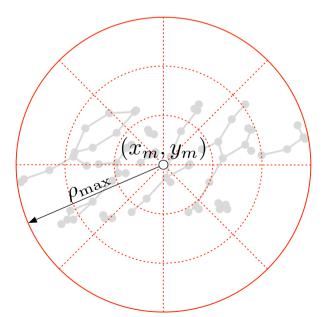
Graph-based Keyword Spotting – Graph Representation

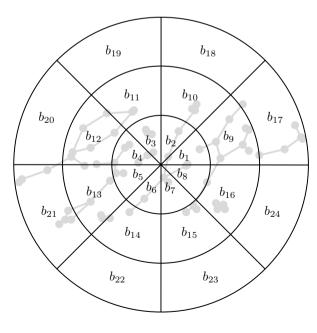

George Washington (GW)							
Original	Preprocessed	Keypoint	Grid	Projection	Split		
him	him	·		· Jan · · · · · · · · · · · · · · · · · · ·	for the second		
Letters,	Letters	Letters,	and to a for the second state		Latini		
Parzival (PAR)							
		Parziva	al (PAR)				
Original	Preprocessed	Parziva Keypoint	al (PAR) Grid	Projection	Split		
		Keypoint					

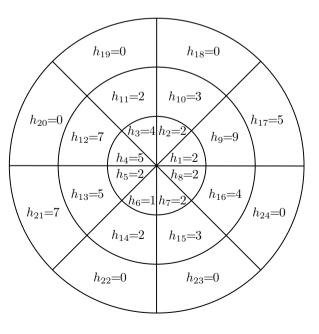
Graph-based Keyword Spotting – Fast Rejection Method

The actual KWS is based on **matching** a **query graph** q **with** a set of **document graphs** G = { $g_{1,...}g_N$ } by means of **Bipartite Graph Edit Distance (BP)**.

q x |G| matchings with cubic time complexity


Fast rejection = Filtering graphs with high dissimilarity and thus speeding up the KWS procedure without negatively affecting the retrieval accuracy.




Graph-based Keyword Spotting – Fast Rejection (Construction of PGD)

Define centre of mass (x_m, y_m) and radius ρ_{max} Polar graph segmentation based on u_{max} and v_{max} , i.e. 3 and 8 (24 bins)

Create histogram H={h₁,...,h_n} by counting the number of nodes per segment h_i

Graph-based Keyword Spotting – Fast Rejection (Computation of PGD)

Algorithm 1 Polar Graph Dissimilarity (PGD)

Input: Graphs g_1 and g_2 , recursion depth r

Output: Polar graph dissimilarity between graph g_1 and g_2

- 1: function $PGD(l, g_1, g_2)$
- 2: Create histogram H_1 based on g_1 , and histogram H_2 based on g_2
- 3: Calculate χ^2 -distance $d(H_1, H_2)$
- 4: **if** l equal r **then**
- 5: return d
- 6: Segment g_1 and g_2 based on quadtree to $g_{1_1}, g_{1_2}, g_{1_3}, g_{1_4}$ and $g_{2_1}, g_{2_2}, g_{2_3}, g_{2_4}$

7: return
$$(\sum_{i=1}^{4} PGD(l+1, g_{1_i}, g_{2_i})) + d$$

 $PGD(g_1, g_2) = 743 \quad \text{actually used in} \quad d(q, g_i) \begin{cases} \infty, & \text{if } PGD(q, g_i) > D \\ BP(q, g_i), & \text{otherwise} \end{cases}$

Experiments – Setup

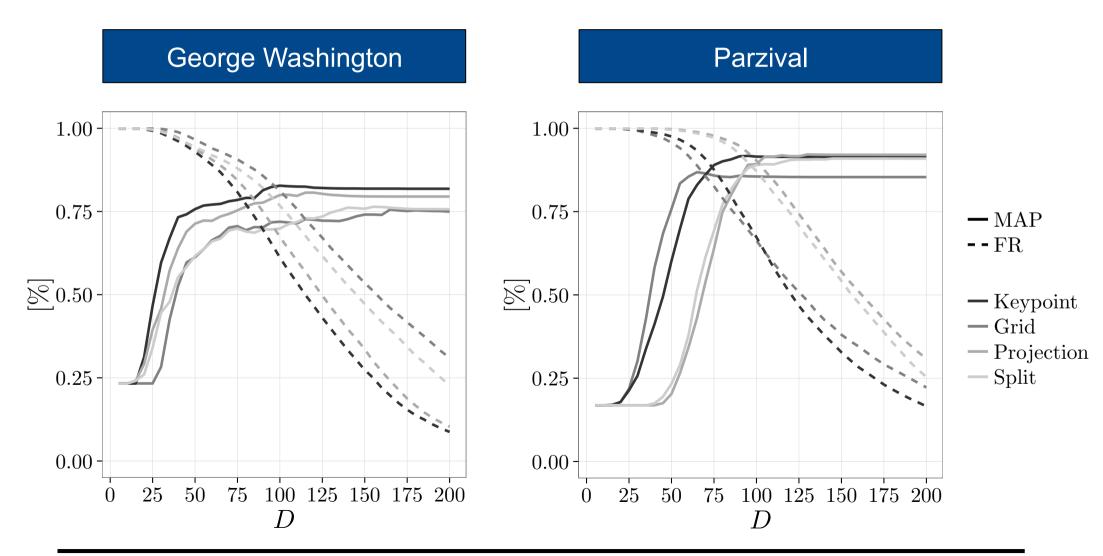
KWS experiment is based on two datasets

- George Washington
- Parzival

Quality is measured by **Average Precision (AP)** for global thresholds, **mean Average Precision (mAP)** for local thresholds, and **Filter Rate (FR)**.

Recall	= True Positives / (True Positives + False Negatives)
Precisior	n = True Positives / (True Positives + False Positives)
AP	= Area under the curve of the Recall-Precision curve
mAP	= Average area under the curve of Recall-Precision curves

FR = Relative amount of pairwise matchings that is filtered


Experiments – Results KWS (mAP) / Validation of Polar Graph Dissimilarity (PGD)

Optimal u_{max} and v_{max} for recursion level I = 1 and 2

We optimised the MAP for $\mathbf{u}_{max} = \{1, 2, 3, 4, 5, 6\}$ and $\mathbf{v}_{max} = \{4, 8, 12, 16, 20, 24, 28, 32, 36, 40\}$ for two recursion levels $\mathbf{I} = \{1, 2\}$.

		GW				PAR			
	l =	= 1	l = 2			l = 1	l=2		
Method	u_{\max}	v_{\max}	u_{\max}	v_{\max}	$ u_{\mathrm{max}}$	$_{\rm c}$ $v_{ m max}$	u_{\max}	v_{\max}	
Keypoint	4	12	1	6	3	20	2	6	
Grid	5	24	1	4	4	20	1	6	
Projection	5	16	1	4	3	36	3	4	
Split	4	20	1	4	3	40	2	6	

Experiments – Results KWS (mAP) / Validation of Rejection Threshold D

Experiments – Results KWS (mAP) / Testing GW

KWS without Fast Rejection BP vs. KWS with Fast Rejection BP-FR

	Method	MAP	土	AP	±	\mathbf{FR}
BP	Keypoint Grid Projection Split	$66.08 \\ 60.02 \\ 61.43 \\ 60.23$		$54.99\\46.44\\48.69\\47.96$		$\begin{array}{c} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{array}$
BP-FR	Keypoint Grid Projection Split	$68.81 \\ 62.59 \\ 64.65 \\ 63.49$	+4.12 +4.27 +5.25 +5.41	$55.68 \\ 47.48 \\ 50.41 \\ 46.95$	+1.25 +2.23 +3.53 -2.11	$69.04 \\ 54.65 \\ 61.04 \\ 47.70$

Experiments – Results KWS (mAP) / Testing PAR

KWS without Fast Rejection BP vs. KWS with Fast Rejection BP-FR

	Method	MAP	\pm	AP	\pm	FR
BP	Keypoint Grid Projection Split	$62.04 \\ 56.50 \\ 66.23 \\ 59.44$		$60.74 \\ 44.08 \\ 60.61 \\ 55.46$		$\begin{array}{c} 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{array}$
BP-FR	Keypoint Grid Projection Split	$67.70 \\ 63.41 \\ 72.02 \\ 65.65$	+9.12 +12.23 +8.74 +10.45	$58.03 \\ 38.59 \\ 55.83 \\ 56.97$	$-4.46 \\ -12.45 \\ -7.89 \\ +2.72$	$58.72 \\ 78.71 \\ 58.10 \\ 39.24$

Conclusion + Future Work

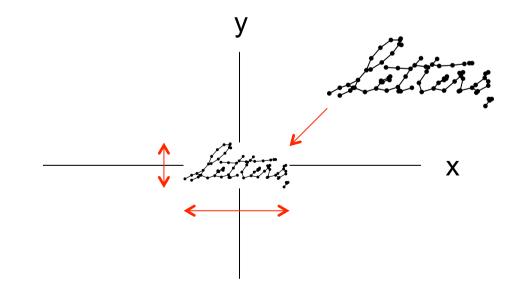
Conclusion

- Novel graph dissimilarity measure (PGD) for fast rejection of KWS matchings
- PGD reduces the amount of graph matchings by 50% or more
- KWS accuracy is not negatively affected

Future Work

- Consider not only nodes but also edges in PGD histograms
- Consider further graph matching algorithms (e.g. Hausdorff Edit Distance)

Q+A



Graph-based Keyword Spotting – Graph Representation

Graph Normalisation by Centering & Scaling

 $x_n = (x - \mu_x) / \sigma_x$ $y_n = (y - \mu_y) / \sigma_y$

 σ is standard deviation of node positions

Experiments – Setup (Number of Words per Dataset)

Validation

For both datasets (GW and PAR), the validation set consists of 1000 different random words including at least 10 instances of all 10 keywords.

Testing					
Dataset	Keywords	Train	Test		
GW PAR	$\begin{array}{c} 105 \\ 1,217 \end{array}$	$2,447 \\ 11,468$,		

Experiments – Results KWS (mAP) / Validation and Testing

Optimal D and corresponding Filter Rate FR

		GW			PAR	
Method	\overline{D}	MAP	\mathbf{FR}	D	MAP	\mathbf{FR}
Keypoint Grid Projection Split	$100 \\ 165 \\ 115 \\ 155$	$82.8 \\ 75.6 \\ 80.7 \\ 76.4$	$\begin{array}{c} 61.1 \\ 46.0 \\ 56.9 \\ 44.6 \end{array}$	$95 \\ 70 \\ 130 \\ 145$	91.7 86.5 92.2 90.9	71.5 85.6 70.9 57.5

KWS with PGD

	G	W		PAR
	MAP	AP	MA	P AP
BP	66.08	54.99	62.0	4 60.74
PGD	58.54	44.77	42.6	5 31.63

Michael Stauffer, Andreas Fischer and Kaspar Riesen