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What is Keyword Spotting 

Keyword Spotting (KWS) is the task of retrieving any instance of a given query 
word in speech recordings or text images. 

 
Focus on handwritten, historical documents 

Document Query Word Spotting 
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Graph-based Keyword Spotting – Overview  
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Graph-based KWS is based on the representation of words by means of 
different graphs. This representations are eventually used to retrieve a keyword 
by matching a query graph with all document graphs. 

Fast Rejection 
Method 
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Graph-based Keyword Spotting – Image Preprocessing 
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Graph-based Keyword Spotting – Graph Representation 

Keypoint Grid Projection SplitOriginal Preprocessed

Projection SplitKeypoint GridOriginal Preprocessed

George Washington (GW) 

Parzival (PAR) 



16.05.17 Michael Stauffer, Andreas Fischer and Kaspar Riesen 7 

Graph-based Keyword Spotting – Fast Rejection Method 

The actual KWS is based on matching a query graph q with a set of document 
graphs G = {g1,…,gN} by means of Bipartite Graph Edit Distance (BP). 

 

 

Fast rejection = Filtering graphs with high dissimilarity and thus speeding up 
the KWS procedure without negatively affecting the retrieval accuracy.  

   

q x |G| matchings with cubic time complexity   
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Graph-based Keyword Spotting – Fast Rejection (Construction of PGD) 
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Define centre of mass (xm,ym) 
and radius 𝛒max 

Polar graph segmentation 
based on umax and vmax, i.e. 3 

and 8 (24 bins) 

Create histogram H={h1,…,hn} 
by counting the number of 

nodes per segment hi 
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Graph-based Keyword Spotting – Fast Rejection (Computation of PGD) 

Graph g1 Graph g2 

d(q, gi)

(
1, if PGD(q, gi) > D

BP (q, gi), otherwise

actually used in PGD(g1, g2) = 743

Algorithm 1 Polar Graph Dissimilarity (PGD)

Input: Graphs g1 and g2, recursion depth r
Output: Polar graph dissimilarity between graph g1 and g2
1: function PGD(l, g1, g2)
2: Create histogram H1 based on g1, and histogram H2 based on g2
3: Calculate �2

-distance d(H1, H2)

4: if l equal r then
5: return d
6: Segment g1 and g2 based on quadtree to g11 , g12 , g13 , g14 and g21 , g22 , g23 , g24

7: return (

4P
i=1

PGD(l + 1, g1i , g2i )) + d
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Experiments – Setup 

KWS experiment is based on two datasets 
•  George Washington 
•  Parzival 
 
Quality is measured by Average Precision (AP) for global thresholds, mean 
Average Precision (mAP) for local thresholds, and Filter Rate (FR). 

Recall   = True Positives / (True Positives + False Negatives) 
Precision = True Positives / (True Positives + False Positives) 

AP   = Area under the curve of the Recall-Precision curve 
mAP   = Average area under the curve of Recall-Precision curves 

FR   = Relative amount of pairwise matchings that is filtered 
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Experiments – Results KWS (mAP) / Validation of Polar Graph Dissimilarity (PGD) 

GW PAR

l = 1 l = 2 l = 1 l = 2

Method u
max

v
max

u
max

v
max

u
max

v
max

u
max

v
max

Keypoint 4 12 1 6 3 20 2 6

Grid 5 24 1 4 4 20 1 6

Projection 5 16 1 4 3 36 3 4

Split 4 20 1 4 3 40 2 6

Optimal umax and vmax for recursion level l = 1 and 2  

We optimised the MAP for umax = {1, 2, 3, 4, 5, 6} and vmax = {4, 8, 12, 16, 
20, 24, 28, 32, 36, 40} for two recursion levels l = {1, 2}. 



16.05.17 Michael Stauffer, Andreas Fischer and Kaspar Riesen 12 

Experiments – Results KWS (mAP) / Validation of Rejection Threshold D 
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Experiments – Results KWS (mAP) / Testing GW 

KWS without Fast Rejection BP vs. KWS with Fast Rejection BP-FR 
GW

Method MAP ± AP ± FR

B
P

Keypoint 66.08 54.99 0.00
Grid 60.02 46.44 0.00
Projection 61.43 48.69 0.00
Split 60.23 47.96 0.00

B
P
-F

R

Keypoint 68.81 +4.12 55.68 +1.25 69.04
Grid 62.59 +4.27 47.48 +2.23 54.65
Projection 64.65 +5.25 50.41 +3.53 61.04
Split 63.49 +5.41 46.95 �2.11 47.70
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Experiments – Results KWS (mAP) / Testing PAR 

KWS without Fast Rejection BP vs. KWS with Fast Rejection BP-FR 

PAR

Method MAP ± AP ± FR

B
P

Keypoint 62.04 60.74 0.00
Grid 56.50 44.08 0.00
Projection 66.23 60.61 0.00
Split 59.44 55.46 0.00

B
P
-F

R

Keypoint 67.70 +9.12 58.03 �4.46 58.72
Grid 63.41 +12.23 38.59 �12.45 78.71
Projection 72.02 +8.74 55.83 �7.89 58.10
Split 65.65 +10.45 56.97 +2.72 39.24
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Conclusion + Future Work 

Conclusion 
•  Novel graph dissimilarity measure (PGD) for fast rejection of KWS matchings 

•  PGD reduces the amount of graph matchings by 50% or more 
•  KWS accuracy is not negatively affected 

 
Future Work 
•  Consider not only nodes but also edges in PGD histograms 

•  Consider further graph matching algorithms (e.g. Hausdorff Edit Distance) 
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Q+A 

?! 
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Graph-based Keyword Spotting – Graph Representation 

xn  = ( x – µx ) / σx   
yn  = ( y – µy ) / σy 
 
σ is standard deviation of node positions   
 

x 

y 

Graph Normalisation by Centering & Scaling 
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Experiments – Setup (Number of Words per Dataset) 

Dataset Keywords Train Test

GW 105 2,447 1,224
PAR 1,217 11,468 6,869

Testing 

Validation 

For both datasets (GW and PAR), the validation set consists of 1000 
different random words including at least 10 instances of all 10 
keywords. 
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Experiments – Results KWS (mAP) / Validation and Testing 

Optimal D and corresponding Filter Rate FR 

GW PAR

Method D MAP FR D MAP FR

Keypoint 100 82.8 61.1 95 91.7 71.5
Grid 165 75.6 46.0 70 86.5 85.6
Projection 115 80.7 56.9 130 92.2 70.9
Split 155 76.4 44.6 145 90.9 57.5

KWS with PGD 

GW PAR

MAP AP MAP AP

BP 66.08 54.99 62.04 60.74

PGD 58.54 44.77 42.65 31.63


