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Abstract—Keyword Spotting (KWS) offers a convenient way
to improve the accessibility to historical handwritten documents
by retrieving search terms in scanned document images. The
approach for KWS proposed in the present paper is based
on segmented word images that are represented by means of
different types of graphs. The actual keyword spotting is based
on matching a query graph with a set of document graphs using
the concept of graph edit distance. In particular, we propose to
employ ensemble methods for KWS with graphs. That is, a query
graph is not matched against one but several different graphs
representing the same document word. Eventually, we use differ-
ent strategies to combine these individual graph dissimilarities.
In an experimental evaluation on two benchmark datasets, the
proposed ensemble methods outperform the individual ensemble
members as well as four state-of-the-art reference systems based
on dynamic time warping.

I. INTRODUCTION

In the last years a trend towards digitalisation of handwritten
historical documents can be observed. Yet, there is a lack of
accessibility with respect to browsing and searching, especially
as fully automatic transcriptions are often not feasible on this
type of documents. Hence, Keyword Spotting (KWS) has been
proposed as a more flexible approach [1]–[4]. Basically, KWS
allows to retrieve any instances of a given keyword in a (large)
document. In case of historical documents, KWS is restricted
to an offline task based solely on document images, without
temporal information about the writing process.

KWS methods can be roughly subdivided into template-
based and learning-based algorithms. In case of template-
based KWS, a query image is directly matched against a
set of document images using matching algorithms like, for
instance, Dynamic Time Warping (DTW) [2], [5], [6]. In
case of learning-based KWS, a statistical model is trained
a priori on a sufficiently large set of training data [3], [4],
[7]. Generally, learning-based approaches achieve a higher
accuracy, while template-based approaches are characterised
by a higher flexibility as they do not require training data. In
the present paper, the focus is on template-based KWS using
diverse graph-based representations for handwritten words.

For a wide range of applications, graphs have been used
as powerful and flexible representation formalism [8], [9].

Yet, with respect to handwriting recognition and especially
KWS, only few attempts can be observed so far [10]–[14].
This is somehow surprising, as graphs offer a comprehensive
formalism for the representation of handwriting. In particular,
graphs are able to adapt their structure and size to the
underlying handwritten words. Moreover, a great variety of
approaches for measuring the dissimilarity of graphs (termed
graph matching) have been proposed and applied during the
last decades [9].

In the present paper, the actual keyword spotting is based
on matching a query graph with a set document graphs (as
proposed by the authors in [13]). However, rather than for-
malising a handwritten word by a single graph representation,
a word is represented by several different graph representations
as introduced in [14]. Thus, several query graphs (representing
the same query word) can be matched with several document
graphs (representing the same document word). Consequently,
different strategies can be applied to combine the individual
graph dissimilarities (derived on the different representations).
This approach is a well known strategy from the field of
multiple classifier systems [15], also referred to as ensemble
methods.

Only limited ensemble methods have been proposed for
KWS to date [16]–[18]. Existing ensemble methods for KWS
are either based on dissimilarity measures of individual algo-
rithms such as neural networks [16] or the ranking information
of different retrieval indices [17], [18].

The remainder of this paper is organised as follows. In Sec-
tion II, the proposed ensemble method for graph-based KWS is
introduced. An experimental evaluation and comparison with
individual graph-based systems and four reference systems
based on DTW is given in Section III. Finally, Section IV
concludes the paper and outlines possible future research
activities.

II. ENSEMBLES FOR GRAPH-BASED KEYWORD SPOTTING

In the present paper we extend the framework for graph-
based KWS proposed in [13] towards ensemble strategies.
The extended framework consists of three different processing



steps as illustrated in Fig. 1. In the following subsections these
three steps are presented in detail.

A. Image Preprocessing

First, original document images are preprocessed in order to
minimise the influence caused by variations like skew, noisy
background and document degradation. Eventually, on the
basis of deskewed and binarised document images, single word
images are automatically segmented (and manually corrected if
necessary)1. For details on the preprocessing and segmentation
step we refer to [13].

B. Graph Representation

Graphs are defined on the basis of preprocessed and seg-
mented word images. A graph g is defined as a four-tuple
g = (V,E, µ, ν) where V and E are finite sets of nodes
and edges, and µ : V → LV as well as ν : E → LE
are labelling functions for nodes and edges, respectively.
Graphs can be divided into undirected and directed graphs,
where pairs of nodes are either connected by undirected or
directed edges, respectively. Additionally, graphs are often
distinguished into unlabelled and labelled graphs. In the
latter case, both nodes and edges can be labelled with an
arbitrary numerical, vectorial, or symbolic label from Lv or
Le, respectively. In the former case we assume empty label
alphabets, i.e. Lv = Le = {}.

All of the following four graph extraction algorithms (orig-
inally presented in [14]) result in graphs where nodes are
labelled with two-dimensional numerical labels, while edges
remain unlabelled, i.e. LV = R2 and LE = {}.
• Keypoint (K): The first graph extraction algorithm

makes use of keypoints in the word images such as start,
end, and junction points. These keypoints are represented
as nodes that are labelled with the corresponding (x, y)-
coordinates. Between pairs of keypoints further interme-
diate points are converted to nodes and added to the
graph in equidistant intervals. Finally, undirected edges
are inserted into the graph for each pair of nodes that is
directly connected by a stroke.

• Grid (G): The second graph extraction algorithm is
based on a grid-wise segmentation of the word images.
For every segment, a node is inserted into the graph and
labelled by the (x, y)-coordinates of the centre of mass
of this segment. Undirected edges are inserted between
two neighbouring segments that are actually represented
by a node. Eventually, the inserted edges are reduced by
means of a Minimal Spanning Tree algorithm.

• Projection (P): The next graph extraction algo-
rithm works similar as Grid. However, this method is
based on an adaptive segmentation of word images by
means of horizontal and vertical projection profiles. A
node is inserted into the graph for every segment and
labelled by the (x, y)-coordinates of the corresponding

1The present KWS approach neglects any segmentation errors and can
therefore be seen as an upper-bound solution.

centre of mass. Undirected edges are inserted into the
graph for each pair of nodes that is directly connected by
a stroke in the original word image.

• Split (S): The last graph extraction algorithm is
based on an iterative segmentation of word images.
Similar to Projection, segments are iteratively split
into smaller subsegments until the width and height of all
segments is below a certain threshold. A node is inserted
into the graph and labelled by the (x, y)-coordinates of
the point closest to the centre of mass of every segment.
For edges a similar procedure as for Projection is
applied.

For every graph representation, an exemplary word of the
employed datasets (i.e. the George Washington letters (GW)
and the Parzival manuscript (PAR)) is shown in Fig. 2.

The dynamic range of the (x, y)-coordinates of each node
label µ(v) is normalised with a z-score (regardless the extrac-
tion algorithm). Formally,

x̂ =
x− µx
σx

and ŷ =
y − µy
σy

,

where (µx, µy) and (σx, σy) represent the mean and stan-
dard deviation of all (x, y)-coordinates in the graph under
consideration.

C. Graph-based KWS Ensemble

In this section we present the details of the proposed graph-
based KWS ensemble. We start with a brief review of the
general graph matching paradigm used in our framework.
Afterwards, we discuss the possibilities of obtaining and
combining different graph dissimilarities for building a KWS
ensemble. Finally, we describe the process of transforming a
matching score into a retrieval index for KWS.

1) Approximate Graph Edit Distance: Given two graphs g1

and g2, the basic idea of graph edit distance is to transform
g1 into g2 using a sequence of edit operations. A standard
set of edit operations is given by insertions, deletions, and
substitutions of both nodes and edges. A set {e1, . . . , ek} of
k edit operations ei that transform g1 completely into g2 is
called an edit path λ(g1, g2) between g1 and g2.

Let Υ(g1, g2) denote the set of all edit paths between two
graphs g1 and g2. To find the most suitable edit path out
of Υ(g1, g2), one commonly introduces a cost c(e) for every
edit operation e, measuring the strength of the corresponding
operation. The idea of such a cost is to define whether or
not an edit operation e represents a strong modification of the
graph. Given an adequate cost model, the graph edit distance
dGED(g1, g2), or dGED for short, between g1 and g2 is defined
by

dGED(g1, g2) = min
λ∈Υ(g1,g2)

∑
ei∈λ

c(ei) .

To compute dGED often A*-based search techniques using
some heuristics are employed [19]–[22]. Yet, this exhaustive
search procedure is exponential with respect to the number
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Fig. 2. Different representations of a sample word from both datasets.

of nodes of the involved graphs. In fact, graph edit dis-
tance belongs to the family of Quadratic Assignment Prob-
lems (QAPs) [23], which in turn belong to the class of NP-
complete problems2.

However, the graph edit distance approximation framework
introduced in [24] reduces the QAP of graph edit distance
computation to an instance of a Linear Sum Assignment
Problem (LSAP). Similar to QAPs, LSAPs deal with the
question how the entities of two sets can be optimally assigned
to each other. Yet, LSAPs can be – in contrast with QAPs –
quite efficiently solved in polynomial time (see [25] for an
exhaustive survey on LSAP solving algorithms).

For the remainder of this paper we make use of this ap-
proximation algorithm for graph edit distance computation and
name the corresponding suboptimal distance dBP(g1, g2), or
dBP for short3. The used cost model is based on constant cost
for node and edge deletions and insertions, i.e. τv ∈ R+ and
τe ∈ R+, respectively. The cost for node substitutions should
reflect the dissimilarity of the associated label attributes. In

2That is, an exact and efficient algorithm for the graph edit distance problem
can not be developed unless P = NP .

3BP stands for bipartite since the LSAP is also termed bipartite matching
problem.

our application the nodes are labelled with (x, y)-coordinates
and we use a weighted Euclidean distance on these labels to
model the substitution cost. Formally,√

β σx(xi − xj)2 + (1− β)σy(yi − yj)2 ,

where α ∈ [0, 1] denotes a parameter to weight the im-
portance of the x- and y-coordinate of a node, while σx and
σy denote the standard deviation of all node coordinates in
the current query graph. Finally, we make use of a weighting
factor β ∈ [0, 1] between the total node and edge edit costs,
respectively.

2) KWS Ensemble: For spotting keywords, in [13] the
authors propose to match a query graph q with all graphs
from a set of document graphs G = {g1, . . . , gN} using a
normalised version of the approximation dBP. In particular,
the graph edit distance dBP is normalised by the sum of the
maximum cost edit path between q and g, i.e. the sum of the
edit path that results from deleting all nodes and edges of q
and inserting all nodes and edges in g. Formally,

d̂BP(q, g) =
dBP...(q, g)

(|Vq|+ |Vk|) τv + (|Eq|+ |Eg|) τe
,

where τv and τe denote the node and edge insertion/deletion
costs. In case a query consists of a set of graphs {q1, . . . , qt}
that represents the same keyword, the normalised graph edit
distance d̂BP... is given by the minimal distance achieved on
all t query graphs, i.e. min

qi∈{q1,...,qt}
d̂BP(qi, g).

In the present paper we propose to use an ensemble for
KWS. That is, we represent both the query graph q as well
as the document graphs gi ∈ G with all formalisms intro-
duced in Subsection II-B. Hence, a query is now represented
by four graphs qK , qG, qP , and qS , i.e. one query graph
per graph extraction method (Keypoint (K), Grid (G),
Projection (P), and Split (S)). The same accounts
for the documents which are now represented by four sets of
document graphs {GK , GG, GP , GS}. Rather than matching
one query graph against one document graph, in our extension
for one query we match qK , qG, qP , and qS with the corre-
sponding set of document graphs. Consequently, four graph
dissimilarities are obtained for each pair (q, g) of a query word
q and a document word g.



The first ensemble strategy employed in this paper considers
all four graph extraction methods by either choosing the min-
imal (termed min), maximal (termed max), or mean (termed
mean) graph edit distance returned on the four representations.
Formally, for one query word q represented by qK , qG, qP ,
and qS and one document word g represented by gK , gG, gP ,
and gS we define

d̂BPmin
(q, g) = min

i∈{K,G,P,S}
d̂BP(qi, gi) ,

d̂BPmax
(q, g) = max

i∈{K,G,P,S}
d̂BP(qi, gi) ,

d̂BPmean(q, g) =
1

4

∑
i∈{K,G,P,S}

d̂BP(qi, gi) .

The second ensemble strategy only considers the two
most promising individual graph extraction methods proposed
in [14], viz. Keypoint and Projection. Two different
weighted sums are applied to combine the respective distances
with each other (termed sumα and summap). Formally,

d̂BPsumα
(q, g) = γ d̂BP(qK , gK) + (1− γ) d̂BP(qP , gP ) ,

d̂BPsummap
(q, g) = δ d̂BP(qK , gK) + ε d̂BP(qP , gP ) ,

where γ denotes a user defined weighting factor, and δ and ε
denote weighting factors based on the mean average precision
of the original KWS systems operating on Keypoint and
Projection graphs, respectively.

The five combinations of bipartite graph edit distances
introduced in this section can now be used for KWS (for the
remainder of the present paper d̂BP... stands for any of the five
combined distances).

3) Retrieval Index: The actual keyword spotting relies on
retrieval indices which are based on d̂BP... . We optimise,
retrieval indices for local and global threshold scenarios (see
Section III-C). In a real world scenario, local thresholds are
used in case of a vocabulary of common keywords, while a
global threshold is used for arbitrary out- of-vocabulary key-
words. Generally, global thresholds are regarded as the more
realistic but also more difficult scenario. That is, in case of
local thresholds, the KWS accuracy is independently measured
for every keyword, while in case of global thresholds, the
KWS accuracy is measured for every keyword with one single
threshold.

The distance d̂BP... is used to derive a first retrieval index
for local thresholds by

r1(q, g) = −d̂BP...(q, g) .

For the second retrieval index r2 for global thresholds, d̂BP...
is further normalised by using the average distance of a query
graph q to its k nearest document graphs, i.e. the document
graphs {g(1), . . . , g(k)} with smallest distance values to q.
Formally, we use

d̄k(q) =
1

k

k∑
i=1

d̂BP...(q, g(i)) .

to derive

ˆ̂
dBP...(q, g) =

d̂BP...(q, g)

d̄k(q)
.

Eventually, the distance ˆ̂
dBP is used to derive the second

retrieval index by

r2(q, g) = − ˆ̂
dBP...(q, g) .

Rather than defining k as a constant, we dynamically adapt
k to every query graph q. We define k such that the distance
dBP...(q, g(k)) of q to its k-th nearest document graph g(k) is
equal to

dBP...(q, g(k)) = d̄m(q) + θ (d̄N (q)− d̄m(q)) ,

where m ∈ N and θ ∈ [0, 1] are user defined parameters
and N refers to the number of document graphs. The value
of d̄m(q) refers to the mean distance of q to its m nearest
neighbours and d̄N (q) refers to the mean distance to all
document graphs available. This sum reflects the level of the
dissimilarities of q to the graphs in its direct neighbourhood.
If the sum is large, k is automatically defined large, too. This
in turn increases d̄k(q), which ultimately increases the scaling
for ˆ̂

dBP... .

III. EXPERIMENTAL EVALUATION

In the following subsections both the experimental pro-
tocol and the evaluations are explained in detail. First, the
datasets employed are introduced in Subsection III-A. Sec-
ond, the reference systems are presented in Subsection III-B.
Finally, the optimisation of the proposed ensembles and the
comparison with several reference systems are described in
Subsection III-C and III-D, respectively.

A. Datasets

The experimental evaluation is carried out on two historical
document collections, viz. the George Washington letters and
the Parzival manuscript.

GW is based on letters that are written in English and
consists of twenty pages with a total of 4,894 handwritten
words4. Variations caused by both degradation and writing
style are low.

PAR is based on a manuscript that is written in Middle
High German and consists of 45 pages with a total of 23,478
handwritten words5. There are markable variations caused by
degradation, while variations caused by writing style are low.

To optimise the parameters of the KWS framework, ten
different keywords (with different word lengths) are manually
selected on both datasets. Furthermore, we define a validation
set that consists of 10 random instances per keyword instance

4George Washington Papers at the Library of Congress, 1741-1799: Series
2, Letterbook 1, pp. 270-279 & 300-309, http://memory.loc.gov/ammem/
gwhtml/gwseries2.html

5Parzival at IAM historical document database, http://www.fki.inf.unibe.ch/
databases/iam-historical-document-database/parzival-database



and 900 additional random words (in total 1,000 words)6. For
the final experiment using the optimised parameter settings
we use the same training and test sets as proposed in [4]. In
Table I, the number of keywords, as well as the size of the
training- and test set are shown for both datasets.

TABLE I
NUMBER OF KEYWORDS AS WELL AS THE SIZE OF THE TRAINING AND

TEST SET FOR BOTH BENCHMARK DATASETS.

Dataset Keywords Train Test

GW 105 2,447 1,224
PAR 1,217 11,468 6,869

B. Reference Systems

We evaluate our ensembles in two different experiments.
First, we compare the results of our ensemble framework with
the results of the individual members of the ensemble. Second,
we compare the overall best ensemble with four KWS systems
based on Dynamic Time Warping (termed DTW’01 [26],
DTW’08 [5], DTW’09 [27], and DTW’16 [28]).

DTW has been widely used in the field of KWS and
can be regarded as one of the standard methods for KWS.
DTW operates on sequences of features vectors acquired
by means of a sliding window over handwritten word or
line images. For matching two sequences of features vec-
tors X = {x1, . . . ,xm} and Y = {y1, . . . ,yn}, DTW
optimally aligns (warps) this sequences along one common
time axis using a dynamic programming approach.

The four reference systems based on DTW actually differ
with respect to the features extracted from the word or line
images. DTW’01 [26] makes use of geometrical features,
while DTW’08 [5] and DTW’09 [27] make use of Histogram
of Oriented Gradient features. Finally DTW’16 [28] employs
Deep Learning features.

C. Optimisation of the Parameters

The performance of all KWS systems is indicated for local
and global thresholds by the Recall (R) and Precision (P)

R =
TP

TP + FN
and P =

TP

TP + FP
,

which are based on the number of True Positives (TP), False
Positives (FP), and False Negatives (FN).

In case of global thresholds, the Average Precision (AP) is
measured, which is the area under the Recall-Precision curve
for all keywords given a single (global) threshold. In case
of local thresholds, the Mean Average Precision (MAP) is
measured, that is the mean over the AP of each individual
keyword given a (local) threshold.

The optimisation of the parameters is conducted for local
and global thresholds independently in three subsequent steps.

First, the parameters for graph edit distance are optimised.
That is, we evaluate 25 pairs of constants for node and

6The small number of keywords is due to the fact that we optimise a large
number of parameters.

edge deletion/insertion costs (τv = τe = {1, 4, 8, 16, 32})
in combination with the weighting parameters α =
{0.1, 0.3, 0.5, 0.7, 0.9} and β = {0.1, 0.3, 0.5, 0.7, 0.9}.
Hence, we evaluate a total of 625 parametrisations per graph
extraction method and dataset (resulting in 5,000 settings in
total). In Table II the optimal cost function parameters are
given for all graph extraction algorithms.

TABLE II
OPTIMAL COST FUNCTION PARAMETER FOR GRAPH EDIT DISTANCE

COMPUTATION.

Method τv τe α β

G
W

Keypoint 4 1 0.1 0.5
Grid 4 1 0.1 0.7
Projection 4 1 0.1 0.5
Split 4 1 0.1 0.5

PA
R

Keypoint 4 4 0.3 0.5
Grid 4 1 0.5 0.7
Projection 4 1 0.5 0.5
Split 4 1 0.3 0.3

Second, the parameters of the ensemble method are opti-
mised using the optimised graph extraction and graph match-
ing parameters (these parameters have been optimised before
in [13], [14]). Hence, the weighting factor γ ∈ {0.1, . . . , 0.9}
for the ensemble sumα is the sole parameter that needs to
be optimised (all other ensemble strategies need no parameter
tuning).

In Table III, the MAP is given for the tested parameter
settings for γ on both benchmark datasets. Note that the best
performing parameter setting is indicated in bold face.

TABLE III
OPTIMAL γ FOR THE sumα ENSEMBLE.

MAP

γ GW PAR

0.1 73.21 100.00
0.2 73.34 99.19
0.3 75.23 99.19
0.4 71.84 99.19
0.5 71.75 99.19
0.6 71.34 96.33
0.7 72.00 94.65
0.8 72.10 94.28
0.9 72.05 93.95

Finally, the retrieval index r2 (used for global thresh-
olds) needs to be optimised. In particular, parameter m
and threshold scaling factor θ are individually optimised for
each ensemble (N is defined by the number of document
graphs). We tested 1,000 parameters pairs (m, θ) with m ∈
{10, 20, . . . , 90, 100} and θ ∈ {0.01, 0.02, . . . , 0.99, 1.00}. In
Table IV, the optimal parameter settings for r2 are given for
all ensembles.

Generally, we aim to reduce interclass variations in order
to optimise the AP for a single global threshold. Thus,
the differences of the optimal parameter settings are due to
different distributions of the graph edit distances for GW and



TABLE IV
OPTIMAL m AND θ FOR RETRIEVAL INDEX r2 .

Method m θ

G
W

min 70 0.08
max 40 0.10
mean 60 0.06
sumα 70 0.04
summap 90 0.02

PA
R

min 10 0.72
max 10 0.61
mean 10 0.64
sumα 10 0.61
summap 10 0.61

PAR, respectively. In case of GW, the graph edit distances for
global thresholds are optimised by considering a rather large
neighbourhood m and small weighting factor θ. In case of
PAR, we can observe the opposite case.

D. Results and Discussion

Using the optimal parameter configurations, the proposed
KWS ensembles are first compared with the four individual
KWS systems proposed in [13], [14] (actually used as ensem-
ble members). The MAP (for local thresholds) and the AP (for
global thresholds) are given for all individual methods and all
ensembles in Table V. We indicate the absolute gain or loss in
the accuracy of the ensembles when compared with the best
performing individual system (i.e. Keypoint for GW and
Projection for PAR).

On GW we observe a statistically significant improve-
ment (t-test, α = 0.05) of more than 4% for both classifier
ensembles min and summap when compared with the MAP
accuracy of Keypoint. With respect to AP we observe
improvements of up to 2% when compared with the best
individual member of the ensemble (achieved by mean and
summap).

On PAR we observe even larger statistically significant
improvements. In particular, the ensemble mean improves the
best individual MAP by 13% and 11% with local and global
thresholds, respectively. Also the sum-based ensembles sumα

and summap clearly outperform the best individual member.
Overall, the ensemble mean achieves in two out of four

cases the best and and in two cases the second and third best
result, while summap achieves once the best result and three
times the second best result. Hence, we conclude that mean
and summap are the best performing ensembles. On the other
hand, we observe that the ensemble max is not a well suited
strategy in our specific scenario as it achieves the worst result
of all ensembles in all four cases.

For the comparison with four state-of-the-art systems based
on DTW [5], [26]–[28], we consider the ensemble mean
only. In Table VI the MAP and AP of this particular en-
semble is compared with the four reference systems. On both
datasets and threshold scenarios the proposed system clearly
outperforms all DTW-based reference systems. The ensemble
achieves improvements of up to 70% (on the PAR dataset
using local thresholds).

IV. CONCLUSION AND OUTLOOK

In this paper a procedure to build an ensemble for the
task of graph-based keyword spotting is presented. Rather
than representing a word by a single graph representation,
the proposed ensemble methods make use of several graph
representations at a time. In particular, we use four different
graph representation applicable to segmented word images.

Basically, a keyword represented as query graph can be
retrieved from a set of document graphs by pairwise graph
matchings. In the proposed approach of ensemble methods,
several query graphs are matched against several document
graphs (i.e. one query and one document graph per graph
extraction method). Consequently, several graph distances are
obtained, which are in turn combined by means of different
statistical measurements.

For the experimental evaluation, the proposed ensemble
methods are tested on two different benchmark datasets,
viz. George Washington and Parzival, using local and global
thresholds. The proposed ensemble strategies are first com-
pared with the individual graph-based KWS systems. We
observe that all ensemble methods, expect one, clearly out-
perform the individual methods on both threshold scenarios.
Especially, the strategies mean and summap achieve promising
improvements when compared to the individual KWS systems.
Last but not least, the overall best ensemble method clearly
outperforms four state-of-the-art reference systems based on
DTW.

One might argue that ensemble and in particular graph-
based approaches are limited by the increased complexity
of the matching procedure when compared to statistical ap-
proaches. However, recent papers (e.g. [29]–[31]) show that
the complete KWS procedure with graphs can be substantially
speeded up by filters and other heuristics.

The improvements achieved by ensemble methods motivate
several lines of future research. First, new graph represen-
tations, which provide different, complementary perspectives
on the handwritten words are expected to further improve the
diversity of the ensemble and hence the KWS performance.
Secondly, different graph matching methods could contribute
to obtain more ensemble members. Finally, the combination
methods can be extended, for example by including learning-
based combination systems.
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TABLE V
INDIVIDUAL CLASSIFIERS VS. ENSEMBLES (USING DIFFERENT COMBINATION STRATEGIES)

GW PAR

Method MAP ± AP ± MAP ± AP ±

In
di

vi
du

al Keypoint 66.08 55.22 62.04 60.76
Grid 60.02 46.09 56.50 46.00
Projection 61.43 49.34 66.23 62.38
Split 60.23 48.08 59.44 56.25

E
ns

em
bl

e min 70.56 +4.48 56.82 +1.59 67.90 +1.67 62.33 −0.05
max 62.58 −3.50 47.94 −7.29 67.57 +1.34 50.59 −11.79
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